4.9. Контроль температуры аквариума
Применение предлагаемой схемы автоматического терморегулятора актуально в осеннее-зимний период в жилых помещениях и круглый год в нежилых, промышленных помещениях (холл, вестибюль, кафе, зоомагазин и др.), когда колебание температуры окружающего воздуха очевидно. Тем, кто занимается разведением декоративных рыб или просто держит дома аквариум с рыбами и земноводными для удовольствия, известно, что большинство видов декоративных рыбок не переносит сильных колебаний температуры водной среды относительно комнатной. Большая часть рыб и земноводных хорошо себя чувствуют в диапазоне температур от +18 до +24 °C. Причем кратковременное повышение температуры воды (до +26 °C, что бывает жарким летом) для большинства экземпляров еще терпимо и не приводит к их гибели. Некоторые специалисты даже специально искусственно повышают температуру среды обитания своих питомцев, максимально приближая ее к естественной для того или иного вида рыб, чтобы вызвать быстрое созревание икринок или роды живородящих экземпляров, так как при повышении окружающей температуры процессы созревания всегда ускоряются. Понижение температуры ниже предела +18 °C (а для отдельных видов рыб (карпы) предел составляет +19 °C) губительно для большинства декоративных плавающих и земноводных. Простое устройство, варианты которого представлены на рисунках 4.18 и 4.19, обеспечит автоматический контроль нижнего предела температуры воды в аквариуме до 100 литров (объем контролируемой территории зависит от мощности специального нагревательного элемента) и включит нагрев при понижении температуры воды ниже установленного предела.
Конструктивно устройство является параметрическим стабилизатором, однако схемное решение выполнено просто и эффективно, что позволяет повторить схему даже радиолюбителю с небольшим опытом.
Отличительная особенность устройства – его простота и надежность. Устройство собрано всего на одной логической КМОП микросхеме К561ЛЕ5 и состоит из двух основных узлов преобразователя температуры в напряжение (на элементах 001.1 и 001.2) и выходного управляющего каскада, варианты которого представлены на двух разных рисунках.
Рис. 4.18. Электрическая схема устройства контроля температуры аквариума
На рисунке 4.18 представлен вариант температурного стабилизатора, который рекомендуется применять для контроля воды в аквариуме и автоматического подогрева. Использовать в аквариуме (или другой водной среде) первый вариант схемы эффективнее потому, что он должен питаться от трансформаторного стабилизированного блока питания, например, со стабилизатором КР142ЕН8Б (на схеме не показан). Схема источника питания не приводится намеренно, так как эти источники питания популярны, многократно описаны в литературе по радиоэлектронике.
Опускать в аквариум нужно электробезопасный датчик (терморезистор), а использовать в аквариуме схему с бестрансформаторным источником питания просто опасно!
Как видно из рисунков, они отличаются выходным каскадом управления нагрузкой и питанием. Во втором варианте показан выход через тиристорный каскад. Здесь достаточно бестрансформаторного узла, состоящего из нескольких элементов (VD4, RIO, СЗ, С5, VD2). При этом схема температурного стабилизатора (рис. 4.18) соединяется со схемой на рисунке 4.19 соответственно точкам А, Б и В.
Рис. 4.19. Узел управления нагревательным элементом в цепи 220 В
При использовании данного устройства с бестрансформаторным питанием от сети 220 В необходимо соблюдать меры безопасности и не прикасаться к элементам устройства до отключения его от сети. Мощность нагрузки – до 100 Вт, а если установить тиристор на охлаждающий радиатор, можно управлять нагрузкой до 600 Вт. Ограничивающий резистор R10 в бестрансформаторном узле питания должен быть типа МЛТ-2 (ОМЛТ-2) сопротивлением 22–68 кОм.
Диод КД209 можно заменить на КД105Б. Стабилитрон используется с напряжением стабилизации 9—14 В (при применении микросхемы K561ЛE5) и 11–12 В при применении микросхемы К176 серии. Конденсаторы СЗ, С5 сглаживают пульсации переменного тока. Преобразователь напряжение-температура выполнен как делитель напряжения, в который включен терморезистор R4. Пороговый выключатель реализован на элементах DD1.1, DD1.2, K561ЛE5. Терморезистор (термистор) применен типа ММТ-4 (или КМТ-4) с сопротивлением 10–47 кОм. При настройке схемы (установке порога срабатывания) необходимо скорректировать положение движка переменного резистора R2 – лучше использовать его с линейной характеристикой изменения сопротивления. Допустим, что падение напряжения на резисторе R4 мало. Тогда на выходе элемента DD1.2 напряжение также мало, ключ на транзисторе VT1 закрыт, и ток в нагревателе отсутствует. Вследствие потерь тепла температура постепенно понижается и, достигнув порогового значения переключения элемента DD1.1, переключает его. Тогда на выходе элемента DD1.1 появляется низкий логический уровень, после инвертирования на выходе второго элемента микросхемы КМОП появляется высокий логический уровень (напряжение 8—10 В), которое
отрывает транзистор, реле К1 включается, и через нагревательный элемент начинает протекать ток.
Когда температура воды плавно (из-за большого объема воды и небольшой мощности нагревательного элемента) достигнет уровня +20 °C – уровня, на который надо настроить схему, произойдет обратный процесс – пороговый элемент переключится, нагрузка обесточится. Параллельно реле К1 установлен сигнализатор на светодиоде для визуального контроля за работой автоматики. Кроме этой функции такое схемное решение препятствует кратковременным броскам напряжения в моменты включения-отключения реле, исключая «дребезг» контактов К1. Кроме указанного в схеме, в качестве исполнительного элемента (реле К1) можно использовать маломощные реле РЭС15 (паспорт РС4.591.003), РЭС10 (РС4.524.302) или любое другое на напряжение включения, соответствующее напряжению питания схемы. В качестве нагревательного элемента используется отечественный или импортный стеклянный «нагреватель для аквариумов», рассчитанный на переменное напряжение 220 В промышленного изготовления. Хорошие результаты были получены и при использовании в качестве К1 автомобильного реле на 12 В (позиция 90.3747 в каталоге автомобилей семейства ВАЗ) с нормально разомкнутыми контактами. Подключение (коммутирование) нагрузки мощностью до 0,5 кВт контактами реле осуществляется безопасно. Термистор соединяется с основной схемой через двухконтактный разъем экранированным проводом (длина которого должна стремиться к минимальной). Сам термистор и места пайки его выводов к соединительному проводу изолируются поливинилхлоридными трубками и запекаются в парафин.
Питание первого варианта устройства необходимо осуществлять через понижающий трансформатор со стабилизатором напряжения. Микросхема К561ЛЕ5 работоспособна в диапазоне напряжений 5-15 В, микросхема К176 серии – в диапазоне 8,4-12,5 В.
Схема начинает работать сразу при использовании исправных элементов и отсутствии ошибок в монтаже. Из-за малого количества компонентов печатная плата не разрабатывалась.
Микросхему DD1 и элементы обвески можно монтировать на плату из одностороннего фольгированного гетинакса (текстолита), выполненную методом прорезания в проводящем слое скальпелем (или другим острым предметом) изолирующих дорожек. Выводы элементов припаиваются к проводящим секторам платы, разделенным изолирующими дорожками.
Грубую настройку устройства (установку уровня срабатывания, соответствующего +20 °C) осуществляют так: при первой подаче питания нагрузку не подключают, опускают датчик (термистор) в аквариум (предварительно выдержанный при комнатной температуре +20 °C – о чем должен свидетельствовать плавающий в аквариуме ртутный термометр). Плавным вращением регулятора R2 устанавливают критическое положение, при котором нагрузка еще не включается, но вот-вот включится. О состоянии питания нагрузки судят по свечению индикатора-светодиода HL1. Когда индикатор светится – потенциальная нагрузка включена. Продержав в воде с комнатной температурой датчик 10–15 мин, его вынимают и, не обесточивая схему, помещают в любую емкость с холодной водопроводной водой (контролируемая термометром температура +19 °C) – в течение нескольких мин датчик охладится, и устройство включит нагрузку (светодиод).
Если реле срабатывает нечетко (поет), уменьшают до 2–2,5 кОм сопротивление резистора RЗ.
По завершении этого этапа настройку можно считать законченной.