Глава V Деревянные конструкции Балки и прогоны

We use cookies. Read the Privacy and Cookie Policy

Глава V

Деревянные конструкции Балки и прогоны

Для поддержания кровли очень дешево и удобно применять какие-нибудь балки. Если над пролетом между стенами положить длинные наклонные балки, или стропила, то они будут передавать вес крыши через свои концы вертикально вниз, не оказывая никакого распирающего давления. В результате нежелательных отклонений линии давления от вертикали не возникнет.

(Рис. 26).

Рис. 26 на схеме показано шарнирное опирание (на роликах), чтобы подчеркнуть необходимость избежать распирания стен.

Уже по одной только этой причине балка является одним из важнейших элементов всех строительных конструкций.

Слово «балка» (beam) на староанглийском означает «дерево», оно до сих пор сохранилось в английских названиях отдельных деревьев, например березы и граба (whitebeam, hornbeam). Сегодня балки чаще всего делают из стали и железобетона, однако в прошлом на протяжении столетий при строительстве слово «балка» означало деревянный брус, часто даже целый ствол дерева. Хотя дешевле и проще срубить дерево, чем построить каменную арку или куполообразный свод, раздобыть нужное количество больших деревьев тоже порой было нелегко, больше того, настали времена, когда длинные брусья стали редкостью. Вот тогда и возникла необходимость в поисках способов, которые позволили бы строить крыши из деталей небольшой длины.

В современном строительстве балки, прогоны, настилы, обрешетки и другие изгибаемые элементы следует рассчитывать на прочность и прогиб. Настилы и обрешетки под кровлю следует рассчитывать на следующие сочетания нагрузок:

а) постоянная и временная от снега (расчет на прочность и прогиб);

б) постоянная и временная от сосредоточенного груза 1 кН (100 кгс) с умножением последнего на коэффициент перегрузки n = 1,2 (расчет только на прочность).

При сплошном настиле или при разреженном настиле с расстоянием между осями досок или брусков не более 150 мм нагрузку от сосредоточенного груза следует передавать на две доски или бруска, а при расстоянии более 150 мм – на одну доску или брусок. При двойном настиле (рабочем и защитном, направленном под углом к рабочему) сосредоточенный груз следует распределять на ширину 500 мм рабочего настила.

Подрезка на опоре в растянутой зоне изгибаемых элементов из цельной древесины глубиной a ? 0,25h допускается при условии

A/bh<0,4МПа = 4 кгс/кв. см

где А – опорная реакция от расчетной нагрузки;

b и h – ширина и высота поперечного сечения элемента без подрезки.

Длина опорной площадки подрезки с должна быть не больше высоты сечения с, а длина скошенной подрезки с1 не менее двух глубин а (рис. 40).

(Рис. 27) Скошенная подрезка конца балки.

В консольно-балочных прогонах шарниры следует осуществлять в виде косого прируба.

Передачу сосредоточенных нагрузок на несущие элементы конструкций следует осуществлять через их верхние грани.

Составные балки

Составным балкам на податливых связях следует придавать строительный подъем путем выгиба элементов до постановки связей. Величину строительного подъема (без учета последующего распрямления балки) следует принимать увеличенной в полтора раза по сравнению с прогибом составной балки под расчетной нагрузкой.

Брусчатые составные балки следует сплачивать не более чем из трех брусьев с помощью пластинчатых нагелей.

Балки клееные

Клееным балкам с шарнирным опиранием следует придавать строительный подъем, равный пролета. В клееных изгибаемых и сжато-изгибаемых элементах допускается сочетать древесину двух сортов, используя в крайних зонах на 0,15 высоты поперечного сечения более высокий сорт, по которому назначаются расчетные сопротивления).

Пояса клееных балок с плоской фанерной стенкой следует выполнять из вертикально поставленных слоев (досок). В поясах балок коробчатого сечения допускается применять горизонтальное расположение слоев. Если высота поясов превышает 100 мм, в них следует предусматривать горизонтальные пропилы со стороны стенок.

Для стенок балок должна применяться водостойкая фанера толщиной не менее 8 мм.

Рамные конструкции

Расчет на прочность элементов трехшарнирных рам в их плоскости допускается выполнять по правилам расчета сжато-изгибаемых элементов с расчетной длиной, равной длине полурамы по осевой линии.

Устойчивость плоской формы деформирования трехшарнирных рам, закрепленных по внешнему контуру, допускается проверять по формулам:

N/?FРАС ? RC

где RC – расчетное сопротивление древесины сжатию вдоль волокон;

? – коэффициент продольного изгиба, определяемый согласно формулам:

при гибкости элемента ? ? 70

? = 1-a(?/100)2

при гибкости элемента ? > 70

? = A/?2

где коэффициент а = 0,8 для древесины и а = 1 для фанеры,

коэффициент А = 3000 для древесины и А = 2500 для фанеры.

FНТ – площадь нетто поперечного сечения элемента;

FРАС – расчетная площадь поперечного сечения элемента, принимаемая равной:

При этом для рам из прямолинейных элементов, если угол между осями ригеля и стойки более 130?, и для гнутоклееных рам расчетную длину элемента следует принимать равной длине осевой линии полурамы. При угле между стойкой и ригелем меньше 130? расчетную длину ригеля и стойки следует принимать равной раздельно длинам их внешних подкрепленных кромок.

Криволинейные участки гнутоклееных рам (рис. 28) при отношении h/r ? 1/7 (h – высота сечения, r – радиус кривизны центральной оси криволинейного участка) следует рассчитывать на прочность по формуле

N/FНТ ? RC

где RC – расчетное сопротивление древесины сжатию вдоль волокон;

? – коэффициент продольного изгиба, определяемый согласно вышеприведенным формулам;

FНТ – площадь нетто поперечного сечения элемента;

FРАС – расчетная площадь поперечного сечения элемента, принимаемая равной:

в которой при проверке напряжений по внутренней кромке расчетный момент сопротивления следует умножать на коэффициент kкв:

kкв = (1–0,5h/r)/(1–0,17h/r)

а при проверке напряжений по наружной кромке – на коэффициент kкн:

kкв = (1+0,5h/r)/(1+0,17h/r)

Расстояние z от центральной оси поперечного сечения до нейтральной оси следует определять по формуле

z = h2/12r

(Рис. 28) Расчетная схема к определению напряжений в криволинейной части гнутоклееных рам.

Своды из досок

Свод – пространственная конструкция, перекрытие или покрытие сооружений, имеющее геометрическую форму, образованную выпуклой криволинейной поверхностью. Под нагрузкой свод подобно арке работает преимущественно на сжатие, передавая на опоры вертикальные усилия, а также во многих типах свода и горизонтальные (распор) усилия. Простейшим и наиболее распространенным является цилиндрический свод, опирающийся на параллельно расположенные опоры (стены, ряды столбов, аркады и т. п.). В поперечном сечении он представляет собой часть окружности эллипса, параболы и др. Два цилиндрических свода одинаковой высоты, пересекающиеся под прямым углом, образуют крестовый свод, который может опираться на свободностоящие опоры (столбы) на углах. Части цилиндрического свода – лотки, или щёки, опирающиеся по всему периметру перекрываемого сооружения на стены (или арки, балки), образуют сомкнутый свод. Зеркальный свод отличается от сомкнутого тем, что его верхняя часть (плафон) представляет собой плоскую плиту. Производной от свода конструкцией является купол. Отсечением вертикальными плоскостями частей сферической поверхности купола образуется купольный (парусный) свод (свод на парусах). Многочисленные разновидности основных конфигураций свода определяются различием кривых их сечений, количеством и формой распалубок и пр. (своды стрельчатые, ползучие, бочарные, сотовые и др.). Древнейшими являются так называемые ложные своды, в которых горизонтальные ряды кладки, нависая один над другим, не передают усилий распора. В IV–III тыс. до н. э. в Египте и Месопотамии появились цилиндрические своды, заимствованные архитектурой Древнего Рима, где также возводились сомкнутые и крестовые своды. В Византии применялись цилиндрические, парусные, крестовые своды, в частности при строительстве крестово-купольных храмов. В архитектуре Азербайджана, Индии, Китая, Средней Азии и Ближнего Востока обычно использовались стрельчатые своды. В Западной и Северной Европе в Средние века получили распространение крестовые своды, которые в готическом зодчестве приобрели стрельчатый характер и основной конструктивный элемент – нервюру. С древности своды выполнялись преимущественно из природного камня и кирпича. Величина прочности камня на изгиб ограничивала ширину пролета в стоечно-балочной конструкции примерно на 5 м. Применение сводов (в которых камень, работая не на изгиб, а на сжатие, обнаруживает более высокую прочность) позволило значительно увеличить размер пролетов. Со второй половины XIX в. своды нередко создавались на основе металлических конструкций. В XX в. появились различные типы монолитных и сборных железобетонных тонкостенных сводов-оболочек сложной конструкции, предназначенных для покрытий зданий и сооружений с большими пролетами. С середины XX в. распространяются также деревянные клееные сводчатые конструкции.

Архитектурные решения крыш

Для обеспечения отвода атмосферных осадков крыши всех типов выполняются циклонами. В зависимости от уклона крыши называются скатными или плоскими. Плоскими считаются крыши уклоном менее 15. Обычно их используют для устройства террас, открытых площадок, веранд, эксплуатируемых крыш (солярий, сад на крыше и т. п.), то есть при устройстве бесчердачных крыш.

При скатных крышах с уклоном более 35 градусов пространство между крышей (обрешеткой) и чердачным перекрытием имеет достаточную высоту, чтобы использовать это пространство как проходной чердак (для обслуживания и ремонта конструкций крыши) или для устройства мансарды.

Типы крыш зависят в основном от формы здания и материала кровли. Наиболее распространенная форма крыши в малоэтажном строительстве – двухскатная. К двухскатной относится также ломаная крыша, хотя конструктивное исполнение и объектно-планировочное решение принципиально отличается от прямолинейной двухскатной крыши. Прямолинейная двухскатная крыша может быть как с обычным чердаком, так и с мансардой, а ломаная скатная крыша специально предназначена для устройства под ней мансарды, так как ломаная форма увеличивает используемую площадь с приемлемой высотой, но усложняет конструкцию стропил, увеличивается расход материалов и трудоемкость исполнения.

При пересечении скатов крыши между собой образуются ребра (выпуклые) или ендовы (разжелобки), которые являются наиболее уязвимыми для дождевых и талых вод, наиболее труднозаделываемыми местами крыши, особенно ендовы. Поэтому всегда следует стремиться к наиболее простой форме крыши, с минимальным числом скатов. Уклоны всех скатов целесообразно делать одинаковыми.

Вальмовая крыша не имеет фронтонов и за счет этого экономичнее двухскатной по расходу стеновых материалов. Однако сооружение такой крыши вызывает усложнение стропильной системы, повышается трудоемкость работ, требует высокой квалификации.

Шатровая крыша – это четырехскатная вальмовая крыша над квадратным (в плане) зданием, и поэтому обладает теми же достоинствами и недостатками. Еще более сложная в изготовлении крыша – многощипцовая (трех– или четырехщипцовая) крыша, устраиваемая на зданиях с пристройками, с боковым освещением мансард, с устройством фронтонов над входом. Сложность создают ендовы, возникающие на стыках скатов. Особенно трудоемки кровельные работы, хотя такая крыша выглядит красиво.

Скатные крыши подразделяются на:

Односкатные, опирающиеся на две наружные стены разной высоты. Чаще всего она используется на вспомогательных зданиях, сооружениях простой конструкции, производственных или складских корпусах. Скат крыши, как правило, обращают к наветренной стороне, защищая тем самым здание от ветра, дождя и снега. Эти крыши относятся к разряду самых экономичных и удобных. Они позволяют максимально использовать внутреннее пространство здания и могут служить потолком в хозяйственных постройках (гаражах, сараях, банях и т. д.), не требующих его строгой горизонтальности. Основная область применения данного типа крыши – вспомогательные здания, сооружения простой конструкции, производственные или складские корпуса.

(Рис. 29) Односкатная крыша.

Двухскатные, опирающиеся на две наружные стены равной высоты, крыши. Двухскатная крыша состоит из двух скатов, направленных в противоположные стороны. Треугольные торцовые стены, образующиеся при этой форме, называются щипцами и фронтонами. Этот вид является самой распространенной классической конструкцией крыши. Существуют варианты крыш с висячими стропильными формами или с наклонными стропилами. К многочисленным вариантам этого типа надо отнести крыши с равномерным или неравномерным углом наклона или же размером карнизного свеса.

(Рис. 30) Двускатная крыша.

Вальмовая крыша – четырехскатная крыша с треугольными скатами (вальмами) от конька до карниза по торцовым сторонам. Если вальма не доходит до карниза, крыша называется полувальмовой. Характерные черты вальмовой крыши акцентируются наличием слуховых окон. Иногда четырехскатные кровли выполняются в виде полувальмовых. В этом случае боковые скаты (полувальмы) срезаются и имеют по линии уклона меньшую длину, чем основные скаты. Полувальмовые крыши применяют там, где существует необходимость защиты фронтона от неблагоприятных внешних воздействий. Вальмовая крыша лучше, чем все остальные, выдерживает ветровые нагрузки, но она очень трудоемка, и ее строительство требует определенных профессиональных навыков. Вальмовая крыша подчеркивает защитную функцию крыши и придает зданию представительный вид.

(Рис. 31) Вальмовая крыша.

Шатровые – это крыши, четыре ската которых выполнены в виде одинаковых треугольников, сходящихся в одной точке. Шатер, шатровое покрытие – завершение центрических построек (храмов, колоколен, башен, крылец) в виде высокой четырехгранной, восьмигранной или многогранной пирамиды. Этот архитектурный элемент распространен в русском каменном зодчестве с XVI в. Кирпичные шатры складывались из наклонных рядов или горизонтальных рядов кирпича с напуском, деревянные – напуском венцов с уменьшающимися длинами сторон. В культовых сооружениях шатер обычно увенчивался луковичной главой, в гражданской и военной – дозорной вышкой, флюгером. Симметричность является определяющим элементом этого вида крыши, она обеспечивается чистыми и однозначными фермами и линиями, объединяющимися на вершине (фермой называется решетчатая конструкция, состоящая из отдельных стержней, соединенных в узлах, и работающая в основном на изгиб).

(Рис. 32) Шатровая крыша.

Ломаные (мансардные), двухскатные – это крыши, каждая плоскость которых представляет собой два прямоугольника, соединенных между собой под тупым углом. При необходимости использования чердачного помещения для сушки белья, хранения домашней утвари или устройства мансарды крышу жилого дома делают двухскатной или ломаной. Мансардная крыша является результатом стремления превратить чердачное пространство в полноценный жилой этаж. Данный тип конструкции крыши очень популярен при современном строительстве, т. к. обеспечивается эффективное использование жилой площади мансардного этажа.

(Рис. 33) Мансардная крыша.

Перечисленные формы крыш подвергаются модификации за счет применения различных элементов, как в устройстве самого покрытия, так и в конструкции кровли. Дополнительные элементы служат для внешнего оформления крыши и повышают функциональность жилых помещений, обеспечивая освещение и вентиляцию.

(Рис. 34) Мансардное окно, монтируемое в крыше.

Одним из этих элементов является мансардное окно, монтируемое в крыше и представляющее собой экономичное решение использования чердачного пространства.

(Рис. 35) Четырехугольное слуховое окно.

Отдельные виды слуховых окон отличаются повышенной сложностью конструкции. Четырехугольное слуховое окно принадлежит к самым традиционным элементам, вертикальные боковые стенки которого, как правило, покрываются малоформатными кровельными материалами.

(Рис. 36) Слуховое окно с двускатной крышей.

Слуховые окна с двускатной крышей представляют собой интересный архитектурный вариант конструктивного оформления крыши.

(Рис. 37) Слуховое окно с круглой крышей.

Архитектурные требования к внешнему виду крыш предъявляются преимущественно в малоэтажном строительстве, где скатные крыши являются существенным элементом архитектурного решения здания, так как в малоэтажном здании крыша составляет значительную часть его объема.

В большинстве случаев следует отдавать предпочтение высокой крыше. Она те только придает зданию более красивый внешний вид, но и позволяет использовать чердачное пространство для устройства мансарды.

Кроме того, на крутых скатах такой крыши не задерживается снег, уменьшаются нагрузки на стропила от веса снега. Но возрастают ветровые нагрузки и их необходимо учитывать при расчете конструкций.

Тепло-, гидроизоляция крыши

При устройстве под крышей мансардного помещения ограждающие конструкции отапливаемой мансарды, в том числе и крыша, должны быть утеплены с целью сохранения тепла в помещении. В этом случае кровля является защитой здания от атмосферных воздействий, поэтому весь объем чердака утепляется и он используется как обычные жилые помещения. Если же чердачные помещения не используются как жилые, то они и не требуют для эксплуатации в зимнее время создания в них положительных температур. В домах с холодными чердачными крышами утепляется только чердачное перекрытие являющееся полом чердака и потолком жилых помещений. Если чердак или мансарда используются в качестве жилых (или рабочих) помещений, то по скатам крыши прокладывается теплоизоляционный материал. Дома с плоскими крышами, не имеющие чердаков, или имеющие скатные крыши, где жилые или служебные помещения расположены непосредственно под крышей (так называемые совмещенные покрытия), обязательно имеют теплоизолированные крыши, чтобы не допустить слишком больших теплопотерь, т. к. через потолки помещение может терять до 50% тепла. При установке изоляции следует придерживаться основного правила: теплоизоляторы устанавливаются на любой поверхности, отделяющей жилые помещения от необогреваемых комнат и внешнего пространства. Следует также использовать изоляцию для предотвращения перегрева тех помещений, которые находятся летом под прямым воздействием солнечных лучей.

Теплоизоляция крыши широко используемая в жилых домах, осуществляется следующими способами. «Невентилируемая (теплая) крыша»: крыша покрывается плитами ППС (пенополистирола) толщиной около 70 мм, на поверхность которого укладывается водостойкий битумный слой. «Вентилируемая (холодная) крыша»: плиты ППС устанавливаются на тыльную сторону крыши, при этом оставляется вентилируемая полость, предотвращающая конденсацию водяных паров.

Благодаря такой теплоизоляции из чердачного помещения можно сделать отличную жилую комнату. Теплоизоляция двухскатной крыши при сравнительно небольших расходах приносит большую пользу. Для этого необходимо вмонтировать в промежутки между стропилами один или несколько слоев пенополистирольных плит общей толщиной, равной толщине стропил.

Чердачное перекрытие (чердачные полы) утепляются изнутри чердака. В качестве утеплителя как уже было сказано используют в большинстве случаев пенополистирольные плиты или плиты, маты на основе стекловолокнистых материалов (изовер, роквул и т. п.). Наиболее удобны в работе минераловатные плиты прямоугольной или клиновидной формы, которые легко укладываются и плотно состыкуются между собой. Крепятся плиты различными способами: при помощи гвоздей или шурупов, посредством мастики или клея, за счет силы трения (враспор), а плиты небольшой толщины могут укладываться на планки, прибитые к внутренним сторонам стропильных ног (черепные бруски).

В соответствии с ГОСТ-16381-77 теплоизоляционные материалы классифицируются по следующим основным признакам: форма и внешний вид; структура; вид исходного сырья; средняя плотность; жесткость; теплопроводность; горючесть.

В отличие от ряда других строительных материалов марка теплоизоляционного материала устанавливается не по показателю прочности, а по величине средней плотности, которая выражается в кг/м3 (р). По этому показателю теплоизоляционные материалы имеют следующие марки: 15, 25, 35, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500. Марка теплоизоляционного материала представляет собой верхний предел его средней плотности. (Так, изделия марки 100 могут иметь р=75-100 кг/м3). За последние годы в нашей стране отмечается резкое ужесточение требований к теплотехническим характеристикам ограждений и это не случайно.

Минимальная толщина теплоизоляционного материала составляет 25 мм. Для основательного утепления помещения лучше использовать материалы толщиной 100 мм. Толщина слоя утеплителя определяется теплотехническим расчетом и зависит в основном от таких факторов, как:

– климатические параметры в районе строительства;

– требуемая температура внутри помещения;

– сопротивление теплопередачи материала для утепления.

Так как теплотехнические достаточно сложны, громоздки и трудоемки, приведем пример ориентировочного упрощенного расчета требуемой толщины утеплителя крыши жилой мансарды в условиях города Саратова.

По СНиП 23-01-99 «Строительная климатология» определяет климатические параметры: продолжительность отопительного периода 196 суток, средняя температура отопительного периода – 4,3 градуса. Требуемая температура внутри жилого помещения +20 градусов.

Находим градусосутки отопительного периода: (20+4,3 градуса) х 196 сут = гр. сут. По СНиП 23-02-2003 «Тепловая защита зданий» находит требуемое сопротивление теплопередаче покрытия (крыши) по таблице 4 (при Д = 4763 гр. сут): R = 4,5 кв. м гр/Вт. В качестве утеплителя примем маты стекловатные типа «изовер» с расчетным коэффициентом теплопроводности L = 0,043 Вт/м. град. Так как в тепловой защите мансарды создается преимущественно за счет утеплителя и пренебрегая в запас работой прочих элементов покрытия (крыши) над мансардой вследствие их незначительности, определим упрощенно ориентировочную требуемую толщину слоя утеплителя: S = R х L = 4, 5 кв. м х гр/Вт х 0, 043 Вт/м х гр = 0, 194 м = 19,4 см.

Таким образом, требуемая толщина, утеплителя из матов «изовер» составляет около 20 см.

Утеплитель хорошо справляется со своей задачей сохранять тепло в помещении, не допуская его чрезмерной утечки, до тех пор, пока он остается сухим. Но сохранить его сухим без специальных мероприятий невозможно. Уже к середине первой зимы утеплитель будет настолько мокрым, что его теплозащитные свойства снизятся на порядок. Почему это произойдет?

Дело в том, что теплый воздух внутри помещения содержит определенное количество воды в виде пара, растворенного в воздухе. Проникая в толщу утеплителя, воздух достигает холодной зоны утеплителя и там происходит конденсация влаги из воздуха, утеплитель намокает. Кроме того, пар конденсируется на холодной поверхности деревянных элементов крыши, вызывая их увлажнение, а затем гниение. Конденсируясь на нижней поверхности кровли, влага капает на нижележащие элементы крыши (обрешетку, прогоны, стропила, утеплитель и т. д.) и увлажняет их. В результате образуется плесень, грибок, происходит гниение деревянных конструкций и коррозия (ржавление) металлических конструкций, особенно тонколистовой стальной кровли, приводя к преждевременному разрушению указанных конструкций и резкому сокращению срока их службы. Увлажнение утеплителя всего лишь на 5% приводит к увеличению его теплопроводности на 15%.

Чтобы не допустить таких явлений, необходимо защитить конструкции крыши от увлажнения.

Прежде всего необходимо под утеплителем со стороны отапливаемого помещения (см. рис. 1) укладывать пароизоляционный слой, который будет препятствовать проникновению пара из отапливаемого помещения к конструкциям крыши. Пароизоляция обеспечивается несколькими путями, во-первых, зазором между кровельным покрытием и теплоизоляционным слоем, а во-вторых, наличием особого пароизоляционного слоя (полиэтиленовой пленки или фольги). Некоторые теплоизоляционные материалы в готовом виде на внутренней поверхности имеют основание из фольги, специально предназначенное для обеспечения пароизоляции крыши. Слишком большая разница в температуре снаружи здания и внутри него без наличия слоя пароизоляции и вентиляционных отверстий в кровле может привести к образованию сырости в кровельном ковре и под ним. Последствия этого очень неприятны: загнивание несущей конструкции, выпадение росы в теплоизоляционном слое, подтеки на потолке и т. п., то есть преждевременное разрушение здания.

Наибольшим сопротивлением паропроницанию обладает полиэтиленовая пленка и может служить надежной защитой конструкций от увлажнения. Специальные пароизоляционные пленки обычно изготовляют трехслойными: средний слой из полипропиленовой сетки и два внешних слоя из полиэтилена. Полипропиленовый слой является армирующим и обеспечивает необходимую прочность на разрыв.

Для надежной пароизоляции пленка укладывается с достаточным нахлестом и проклейкой на стыках. Но достичь 100% пароизоляции все же не удается. Частично пар проникает через пароизоляционную пленку. Чтобы удалить проникший пар, предусматривают зазор между кровлей и утеплителем для вентиляций и высушивание утеплителя. Этот зазор сообщается с внешних воздухом у карниза внизу и у конька вверху. За счет перепада высот от карниза к коньку возникает движение воздуха по подкровельному зазору от карниза к коньку. При большом уклоне и длинном скате поток воздуха может достигать такой большой скорости, что удаляет не только влагу с поверхности утеплителя, но и частички утеплителя, особенно стекловатного. Кроме того, поток воздух может уносить с собой в атмосферу 15–20% тепла, охлаждая утеплитель.

Для ограничения, указанных отрицательных явлений вентилируемо кровли, под кровлей предусматривается специальная ветрозащитная пленка. Ветрозащитная пленка должна отвечать следующим требованиям. Во-первых, она должна быть непродуваемой, чтобы не допустить срыва с поверхности утеплителя отдельных волокн уноса тепла. Во-вторых, пленка должна пропускать пар, проникший в утеплитель. В-третьих, пленка не должна пропускать воду, проникшую через дефекты кровли или образовавшуюся от конденсации на нижней поверхности кровли проникшего пара, который не удалось убрать при помощи вентиляции.

Ветрозащитные пленки обеспечивают паропроницаемость в большинстве случаев за счет микроперфорации. Они укладываются с зазором со стороны утеплителя около 20 мм для вентиляции утеплителя. Их нельзя укладывать на поверхность утеплителя, так как их паропроницаемость недостаточна для эффективного удаления паров воды из утеплителя.

Но в последнее время появились принципиально новые ветрозащитные пленки (производства концерна Дюпон) с паропроницаемостью свыше 300–350 граммов воды на 1 кв. м в сутки. Такую пленку можно укладывать непосредственно на поверхность утеплителя. Эта пленка имеет пористую структуру, отлично пропускает пар, но непроницаем для воды и воздуха. Марка пленки Tyvek (Тувек). Она представляет собой легкое нетканое полотно белого цвета, имеет вес 60 г/кв. м и более. Крепится к деревянным конструкциям с помощью гвоздей, степлера, монтажной ленты и мастики, т. е. не требует для монтажа специального оборудования.

Усилить эффект пароизоляции, гидроизоляции и теплоизоляции поможет вентиляция кровли. В устройстве кровли должны быть предусмотрены следующие виды вентиляции:

– вентиляция пространства между покрытием и гидроизоляцией, охватывающая все плоскости, независимо от степени сложности крыши;

– вентиляция пространства между утеплителем и гидроизоляцией, исключающая наличие «застойных» зон;

– вентиляция подкровельного пространства, являющаяся частью системы вентиляции дома.

При устройстве вентиляции необходимо помнить:

– пар стремится вверх;

– вода стремится вниз.

Следовательно:

– при монтаже пароизоляции помимо технологии укладки полотен кровельных материалов друг на друга, на стены и элементы конструкции; места стыков необходимо проклеивать специальной лентой;

– при отсутствии вентиляции внутреннего пространства дома даже проклеивание специальной лентой полностью не предотвращает попадание влаги в утеплитель при высоком давлении пара. Например, при пропускной способности пароизоляции 1 грамм на 1 м2 поверхности в сутки, за 100 дней через 100 м2 пароизоляции, находящейся под воздействием давления пара, вверх в виде пара проникнет ведро воды;

– стены не должны пропускать воздух и влагу, так как задержавшаяся во внешних слоях стены влага может привести к расслоениям при замерзании;

– пароизоляция должна быть смонтирована как можно ближе к внутреннему пространству дома.

Прежде чем приступать к проведению изоляционных работ, необходимо выполнить некоторые профилактические мероприятия. А именно необходимо тщательно осмотреть несущие конструкции крыши на предмет выявления гнили, плесени, мха, паразитов и отсыревших балок. Если таковые обнаружены, то прежде чем приступать к теплоизоляции, необходимо отремонтировать стропильный каркас, привести его в надлежащий вид. Если вы это не сделаете заранее, то впоследствии при признаках разрушения и протекания крыши, вам придется разбирать недавно уложенные пароизоляционный и теплоизоляционный слои. Кроме того, необходимо также проверить не повреждены ли электрические провода, проложенные на чердаке.

Рассмотрим основные варианты утеплении плоской крыши. Первый вариант – это утепление крыши снаружи. Для этого используются жесткие теплоизоляционные плиты. На рисунке 38 показаны основные элементы данной теплоизоляции. 2 – это несущая конструкция, поверх брусьев которой укладывается сплошное основание из панелей 3. Основание из панелей служит опорой для теплоизоляционных плит 5. Чтобы плиты были надежно зафиксированы и плотно прижаты, их придавливают тротуарными плитками 6 или галькой.

(Рис. 38) Утепление крыши снаружи.

Так как процедура устройства теплоизоляции может повредить конструкцию кровли, то осуществлять ее следует с осторожностью. Необходимо помнить, что очень велика опасность того, что несущая конструкция не выдержит вес кровельных материалов, а само кровельное покрытие даст течь.

Внутренне утепление плоской крыши является наиболее оптимальным решением вопроса теплоизоляции. Процесс устройства данного вида теплоизоляции не труден, главное в нем все заранее продумать и рассчитать. Особенно это касается вопроса размещения осветительных приборов.

В качестве основных материалов вам потребуются огнестойкие пенополистирольные плиты толщиной 25 мм.

Для устройства теплоизоляции вам потребуется привинтить к потолку через каждые 40 см планки 4 из мягкой древесины. Первая планка крепится вдоль любой стены, расположенной перпендикулярно брусьям несущей конструкции 2, вторая планка – вдоль противоположной стены. Пенополистирольная плита 5 клеится встык к первой планке (на специальный клей или мастику). Затем крепится следующая планка и клеится вторая теплоизоляционная плита. Путем чередования планок и плит утепляется весь потолок. После полной укладки теплоизоляционных плит к ним крепится полиэтиленовая пленка 6. Для придания внутреннему виду чердачного помещения аккуратности, к планкам 4 крепятся декоративные панели 7. В качестве крепежных деталей используются оцинкованные гвозди.

(Рис. 39) Внутренне утепление плоской крыши.

Утепление пола чердака не требует одновременного утепления скатов крыши. Так как само чердачное помещение не утеплено, хоть и ограждено скатами крыши, оно как бы выполняет роль переходного помещения, своего рода «тамбура» между низкой наружной температурой и более высокой внутренней. При такой разнице температур и таком утеплении значение пароизоляционного слоя не велико. Теплоизоляционный материал укладывается между брусьями стропильной конструкции. При этом важно не допустить того, чтобы были закрыты вентиляционные отверстия, расположенные на карнизе. Во избежание этого, обычно между брусьями чердачного перекрытия, вдоль карнизных свесов крепят фанерные или картонные полоски либо задерживающие планки.

Для утепления чердачного пола рулонным теплоизолятором необходимо: заделать специальной мастикой или пеной все щели в потолке вокруг труб; между двумя брусьями уложить рулон теплоизоляции и начать раскатывать его в направлении от одного карниза к другому, плотно прижимая его к укладываемой поверхности (но не продавливая).

Для утепления чердачного перекрытия сыпучими теплоизоляционными материалами требования аналогичны изложенным выше. Теплоизоляционный материал насыпается между брусками и при помощи планки разравнивается, чтобы получился слой одной толщины.

В случае устройства в помещении мансарды или жилого чердачного пространства, необходимо утепление скатов. При этом, утепляя скаты крыши, превращая чердачное перекрытие в перекрытие междуэтажное, не нужно его утеплять, не нужно изолировать основное помещение от мансарды. Особое внимание здесь необходимо обратить на качество пароизоляционного слоя. В качестве материалов для изоляции скатов крыши лучше всего использовать жесткие или полужесткие теплоизоляционные плиты прямоугольной и клиновидной формы.

Прежде всего необходимо провести необходимые замеры и подготовить теплоизоляционные плиты необходимой толщины и ширины. Ширина изоляционных плит должна на 1 см превышать расстояние между стропилами, а их толщина – на 2–5 см меньше высоты сечения стропильных ног. Дополнительный 1 см по ширине необходим для лучшей стыковки плит у стропильных ног. Толщина теплоизоляционного слоя выбирается так, чтобы между ним и кровельным покрытием оставался зазор 2–5 см, который обеспечит достаточную циркуляцию воздуха.

Чтобы теплоизолировать карнизы берут две длинные полосы фанеры и по ним утеплитель спускают к карнизному свесу. Затем фанерные планки укладываются в проем между стропильными ногами до их упора нижними концами в карнизную доску. При этом также оставляют зазор 2–5 см для циркуляции воздуха. Теплоизоляционная плита спускается по уложенным таким образом планкам.

Теплоизоляционные плиты укладываются по всей крыше. Оставшиеся куски теплоизоляционного материала используют при подгонке основных плит, для теплоизоляции конька, дверных и оконных проемов, дымовых труб и т. п. Следующим этапом работы является укладка на внутреннюю поверхность теплоизоляционного слоя полиэтиленовая пленка. Пленка должна быть толщиной не менее 0,2 мм, она натягивается на изоляционный слой плит и крепится к плитам скобами. Отдельные полосы пленки укладываются внахлест с последующей герметизацией стыков клеющей лентой. Пленка необходима для обеспечения пароизоляции, если где-нибудь будет допущен разрыв пленки, то пароизоляция будет нарушена.

После укладки тепло и пароизоляционных слоев, внутреннее пространство отделывается декоративными плитами, которые прибиваются или привинчиваются к стропильным ногам.

Таким образом, только при соблюдении технических требований при выполнении теплоизоляции, гидроизоляции, пароизоляции может быть обеспечена нормальная работа всех элементов крыши и долговечность конструкций.

Строительство мансарды

Слово мансарда французского происхождения. История его возникновения связана с 1630 г., когда французский архитектор Франсуа Мансар впервые использовал чердачное помещение для жилых целей. Такой чердачный этаж по его имени и получил название – мансарда.

Мансарда – это эксплуатируемая часть здания, ограждающие конструкции которого одновременно выполняют функции крыши.

В соответствии со СНиП 2.08.01–89 «Жилые здания» – «Этаж мансардный (мансарда) – этаж в чердачном пространстве, фасад которого полностью или частично образован поверхностью (поверхностями) наклонной или ломаной крыши, при этом линия пересечения плоскости крыши и фасада должна быть на высоте не более 1,5 м от уровня пола мансардного этажа». Таким образом мансардный этаж – это этаж в чердачном пространстве, фасад которого полностью или частично образован поверхностями наклонной или ломаной крыши.

Мансардный этаж может занимать всю площадь здания, либо его часть, но, как правило, в пределах лежащих ниже стен базового здания. Архитектурно-планировочные решения могут иметь широкий диапазон, а помещения – любую площадь и конфигурацию.

Устройство мансарды в крыше имеет ряд неоспоримых преимуществ. Оно позволяет наиболее оптимально использовать жилую площадь, значительно экономя пространство, да и средства, затраченные на строительство. Переоборудование неиспользуемого пространства холодного чердака позволяет получить дополнительную жилую площадь, повысить комфортабельность дома или квартиры, а во многих случаях может стать хорошей альтернативой смене жилья, например, при рождении в семье еще одного ребенка. Кроме того, наличие мансарды улучшает эстетический вид здания, красивая необычная мансарда придает своеобразный стиль, как городскому зданию, так и коттеджу. При устройстве мансарды эффективно решается целый комплекс задач:

– осуществляется глубокая проработка архитектурного решения мансардного этажа;

– определяем оптимальную схему несущих конструкций;

– обеспечивается надежная теплозащита и герметичность мансарды.

Внешний вид и красота мансарды в большой степени зависят от устанавливаемых в нее окон.

Устройство мансардного этажа на месте чердачного помещения или на плоской крыше зданий сокращает теплопотери через крышу в пределах 7–9%. Если соблюдать все технологические тонкости устройства мансардной крыши, можно существенно сократить расходы, связанные с ремонтом кровли.

Устройство мансардной крыши имеет свои отличия, которые обусловлены тем, что она подвергается различным воздействиям не только сверху, но и снизу: теплый влажный воздух из жилых помещений поднимается вверх и в виде конденсата выпадает на внутренней поверхности крыши. В связи с этим необходимо строго соблюсти требования, предъявляемые к конструкции мансардной крыши, а именно позаботиться об устройстве теплоизоляции, гидроизоляции и пароизоляции. Мансардный этаж имеет самую большую общую поверхность соприкосновения с внешней средой, поэтому требует эффективной и тщательной теплоизоляции. В качестве утеплителя обычно используют минераловатные плиты. С внутренней стороны утеплителя (повернутой к помещению) предусматривается пароизоляция, а с внешней стороны утепляющего слоя – гидроизоляция. Также важно, чтобы между верхней стороной утеплителя и нижней стороной кровельного покрытия имелось вентиляционное пространство, которое бы способствовало проветриванию и удалению неизбежного потока влажного теплого воздуха, который будет проникать через паровые преграды и теплоизоляционный слой.

Правила проектирования мансард

Мансарду располагают под двускатной крышей с углом наклона стропил 45–60?, а также ломаной крышей с двумя различными уклонами стропил. Ломаная крыша внешне менее эффективна, зато мансардные комнаты имеют вертикальные стены, на нее идет меньше материала. Усложняются соединения стропил со стойками и ригелем (за счет схождения четырех элементов конструкции).

При проектировании мансардного этажа необходимо иметь в виду, что роль ограждающих конструкций в этом случае выполняет совмещенная утепленная кровля и, следовательно, все правила и конструктивные особенности ее устройства являются также и требованиями, которые необходимо соблюдать при возведении мансардного этажа. При проектировании мансарды необходимо также учитывать следующие моменты:

– важным условием размещения мансардных помещений является их взаимосвязь с коммуникационной структурой здания – основы;

– конструктивная схема, материал ограждающих конструкций и деталей мансарды определяются с учетом единства конструкции и архитектурных форм здания-основы;

– особое значение имеют форма и габариты помещений, выбор светопрозрачного ограждения (вертикальных или наклонных окон), их размещение с учетом интерьера и во взаимосвязи с архитектурным обликом;

– выбор планировочного варианта мансарды необходимо осуществлять исходя из планировки здания-основы;

– огромную роль, в зависимости от уровня зрительного восприятия мансардного этажа, играют линии и формы, определяемые геометрией крыши;

– мансарда с крутоуклонной крышей требует особого подхода к выбору кровельного материала, обеспечению теплозащиты, герметизации и гидроизоляции;

– возведение мансарды без отселения жильцов основного здания требует специального метода максимальной безопасности производства работ, ограничения веса конструкций и деталей, сооружения элементов защиты и безопасности.

Для мансарды ширина дома должна быть не менее 4 м 80 см. Высота мансардной комнаты должна быть не менее 2 м 20 см, ширина 2 м 40 см. Там, где потолки скошены, вертикальные стены должны быть высотой 1 м 60 см. Нижний пояс фермы одновременно служит перекрытием над первым этажом.

Противопожарные требования, особенно пути эвакуации мансардного этажа, зависят от планировочной структуры здания-основы:

– при совпадении функций здания-основы и мансардного этажа для путей эвакуации используется лестнично-лифтовый узел здания, к которому примыкает мансарда;

– при несовпадении функций здания-основы и мансардного этажа для создания путей эвакуации требуется устройство специальных коммуникаций, которые могут находиться внутри или вне здания и иметь изолированные выходы, в том числе между двумя зданиями.

Допускается отсутствие выходов в лестничную клетку с каждого этажа квартиры в двух уровнях при условии, что помещения расположены не выше 6-го этажа, и квартира обеспечена дополнительным выходом. Допускается устройство эвакуационных выходов в общую лестничную клетку из творческих мастерских при условии, что возможно сообщение через тамбур. При размещении офисов в мансардах жилых домов, имеющих не более 9-ти этажей, входы и эвакуационные выходы должны быть изолированы от жилой части зданий. Допускается принимать в качестве второго эвакуационного выхода лестничные клетки жилой части здания, при этом выход предусматривается через тамбур с противопожарными дверями.

Мансардное окно может служить спасательным проемом, через которое могут быть эвакуированы люди из помещения.

Высота жилых помещений в мансардном этаже в чистоте принимается не менее 2,5 м, при этом в жилую площадь могут засчитываться и участки помещений с меньшей высотой. Их величина нормируется в зависимости от уклона крыши.

В соответствии со СНиП 2.08.01–89* – при определении площади помещений мансардного этажа учитывается площадь этого помещения с высотой узкой части наклонного потолка 1,5 м при наклоне 300 к горизонту, 1,1 м – при наклоне 450 и 0,5 метра при наклоне 600 и более. При промежуточных значениях высота определяется по интерполяции. Площадь помещения с меньшей высотой следует учитывать в общей площади с коэффициентом 0,7, при этом минимальная высота стены должна быть 1,2 м при наклоне потолка 30?, 0,8 м – при 45?-60?, не ограничивается при наклоне 60? и более.

Расчет объема помещения следует проводить в соответствии с нормативными требованиями, согласно которым высота от уровня пола до поверхности наклонного потолка измеряется в точке ограничения размеров жилой или рабочей площади. Если помещение не ограничивается вверху горизонтальным потолком в той части, где его высота превышает нормируемую, то объем рассчитывается как объем всего помещения, включая его часть над нормативной высотой.

Связь помещений мансардного этажа со зданием может быть осуществлена несколькими способами (а ее устройство требует индивидуального подхода): мансарды непосредственно примыкают к лестнично-лифтовому узлу; мансарды требуют специальных соединительных помещений-коридоров; мансарды требуют устройства специальных коммуникаций в виде лестниц или лифтов, в том числе вне здания.

При разработке интерьера мансардного этажа следует учитывать особенности геометрических форм помещений. Речь идет о размещении лестниц, обстановке ванной комнаты и туалета, кухни, а также о размещении дверей. Например, следует принимать во внимание свободную высоту лестничных маршей в отношении наклонных поверхностей крыши. Трудностей не возникает, когда направление лестницы параллельно уклону крыши или лестница размещена по средней оси здания.

Стены мансарды – это подстропильные стойки. К ним прибиваются перекладины, к которым уже пришиваются доски (или фанера).

Лучше всего сделать легкий потолок, основание которого прибивается к перекладинам подстропильной фермы (если речь идет о ломаной крыше с подстропильными стойками). Если конструкция другая – то основание крепится к стропилам. В зависимости от типа крыш, конструкции мансарды бывают разных видов.

Если крутизна крыши – 45?, при ширине дома 7-10 метров, то конструкция мансарды представляет собой обычную стропильную систему. Потолки в мансарде получаются наклонными.

Если уклон крыши составляет 60?, при ширине дома 5–6 метров, то мансарду сооружают из длинномерных брусьев и досок, которые выступают в качестве стропил.

Не пытайтесь скрыть, изменить пространство под крышей, лучше постарайтесь максимально приспособить его под свои нужды. Если стропила будут поставлены немного круче обычного, то все неудобные зоны, образованные между кровлей и полом, можно использовать под шкафы для одежды и других предметов, устройство мест для сидения, сна и пр. Неудобную зону кровли можно приспособить под открытые книжные полки. Рядом можно оборудовать место для чтения. Разделение мансардного помещения двухдверным платяным шкафом получится спальное место, с одной стороны, и гардероб, – с другой.

Данный текст является ознакомительным фрагментом.