Портландцемент

We use cookies. Read the Privacy and Cookie Policy

Портландцемент

Портландцемент – гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Клинкером называется спекшаяся сырьевая смесь в виде зерен размером до 40 мм; от его качества зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях. Для регулирования сроков схватывания в обычных цементах марок 300–500 при помоле к клинкеру добавляют гипс в количестве не менее 1,0 % и не более 3,5 % от массы цемента в пересчете на ангидрид серной кислоты S0 3, а в цементах высокомарочных и быстротвердеющих – не менее 1,5 % и не более 4,0 %. Портландцемент выпускают без добавок или с активными минеральными добавками.

Качество клинкера зависит от его химического и минералогического составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и С0 2, а глина – из различных минералов. В процессе обжига сырьевой смеси удаляется С0 2, а оставшиеся четыре оксида образуют клинкерные минералы. Содержание оксидов в цементе примерно следующее: 64–67 % СаО, 21–24 % Si0 2, 4–8 % А1 20 3, 2–4 % Fe 20 3. Кроме указанных основных оксидов в портландцементном клинкере могут присутствовать MgO и щелочные оксиды, которые снижают качество цемента. Оксид магния, обожженный при температуре около 1500 °C, при взаимодействии с водой очень медленно гасится и вызывает появление трещин в уже затвердевшем растворе или бетоне, поэтому его содержание в портландцементе не должно быть более 5 %. Наличие в цементе щелочных оксидов свыше 1 % может вызвать разрушение отвердевшего бетона.

Указанные выше основные оксиды находятся в клинкере не в свободном виде, а образуют при обжиге четыре основных минерала, относительное содержание которых в портландцементе следующее (%): трехкальциевый силикат (алит) – 45–60; двухкальциевый силикат (белит) —20–35; трехкальциевый алюминат – 4—12; четырехкальциевый алюмоферрит – 10–18.

Алит — основной минерал клинкера, быстро твердеет и практически определяет скорость твердения и нарастания прочности портландцемента. Он представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2–4 %) других примесей, которые могут существенно влиять на структуру и свойства портландцемента. Белит – второй по важности и содержанию силикатный минерал клинкера, медленно твердеет и достигает высокой прочности при длительном твердении. Белит в клинкере представляет собой твердый раствор двухкальциевого силиката и небольшого количества (1–3 %) др. примесей. В связи с тем, что белит при медленном охлаждении клинкера теряет вяжущие свойства, это явление предотвращается быстрым охлаждением клинкера.

Содержание минералов-силикатов в клинкере в сумме составляет около 75 %, поэтому гидратация алита и белита в основном определяет свойства портландцемента. Трехкальциевый алюминат при благоприятных условиях обжига образуется в виде кубических кристаллов. Он очень быстро гидратирует и твердеет. Продукты гидратации имеют пористую структуру и низкую прочность. Кроме того, он является причиной сульфатной коррозии цемента, поэтому его содержание в сульфатостойком цементе ограничено 5 %. Четырехкальциевый алюмоферрит – алюмоферритная фаза промежуточного вещества клинкера – представляет собой твердый раствор алюмоферритов кальция разного состава. По скорости гидратации этот минерал условно занимает промежуточное положение между алитом и белитом и не оказывает определяющего значения на скорость твердения и тепловыделение портландцемента.

На структуру бетона оказывает значительное влияние пористость цементного камня, связанная с начальным содержанием воды в бетонной смеси. Для получения удобной для укладки бетонной смеси в нее вводят в 2–3 раза больше воды, чем требуется на реакцию с цементом. Таким образом, большая часть воды затворения оказывается в свободном состоянии и образует в затвердевшем камне множество мелких пор. Поэтому для получения плотной структуры цементного камня необходимо применять бетонные смеси с минимальным содержанием воды. В результате повышаются прочность и морозостойкость бетона.

Структура цементного камня, а именно наличие в нем пор и гелеобразного вещества, обусловливает склонность его к влажностным деформациям. При увлажнении он разбухает, а при высушивании дает усадку. Знакопеременные сжимающие и растягивающие напряжения, вызываемые изменением влажности окружающей среды, расшатывают структуру цементного камня и понижают прочность бетона. Степень влажностных деформаций зависит от соотношения гелеобразных и кристаллических фаз в цементном камне. С увеличением последней стойкость камня в таких условиях, называемая воздухостойкостью, повышается. В отличие от рассмотренных далее пуццолановых портландцементов, обыкновенный портландцемент отличается высокой воздухостойкостью. Расширение и растрескивание цементного камня могут вызвать также свободные СаО и MgO, присутствующие в цементе при низком качестве обжига. Гашение их сопровождается значительным увеличением в объеме, и продукты этого гашения разрывают цементный камень.

Прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40x40x160 мм и при сжатии их половинок, изготовленных из раствора состава 1:3 (по массе) с нормальным песком при водоцементном отношении 0,4 и испытанных через 28 суток; образцы в течение этого времени хранят во влажных условиях при температуре 20±2 °C. Предел прочности при сжатии в возрасте 28 суток называется активностью цемента.

Влияние влажности и температуры среды. Большое влияние на рост прочности цементного камня оказывают влажность и температура среды. Скорость химических реакций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Твердение цементного камня на практике может происходить в широком диапазоне температур: нормальное твердение – при температуре 15–20 °C, пропаривание – 80–90 °C, автоклавная обработка – до 170–200 °C, давление пара – до 0,8–1,2 МПа и твердение – при отрицательной температуре.

Продолжительность хранения . Длительное хранение цемента даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После трех месяцев хранения потеря активности цемента может достигать 20 %, а через год – доходить до 40 %. Цементы более тонкого помола теряют больший процент активности, так как влага воздуха, соприкасаясь с цементом, вызывает преждевременную его гидратацию. Восстанавливать активность лежалого цемента можно вторичным помолом. Наиболее эффективен вибродомол цемента, в процессе которого повышается тонкость помола цемента, а также происходит обдирка гидратных и инертных оболочек с цементных зерен. Наиболее целесообразным методом предотвращения потери активности цемента является гидрофобизация.

Стойкость цементного камня . Бетон в инженерных сооружениях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Среди компонентов бетона цементный камень наиболее подвержен развитию коррозионных процессов. Для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть коррозие-, морозо– и атмосферостойким.

Морозостойкость . При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в лед, который увеличивается в объеме примерно на 9 % по сравнению с объемом воды. Лед давит на стенки пор и разрушает их. Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцементного отношения. До определенной тонкости помола (5000–6000 см 2/г) морозостойкость цемента увеличивается, но при дальнейшем возрастании тонкости помола она падает. Это объясняется пористой структурой новообразований цемента сверхтонкого измельчения.

Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие их высокой пористости и низкой морозостойкости продуктов взаимодействия добавок с компонентами цементного камня.

Увеличение водоцементного отношения понижает морозостойкость цементного камня вследствие повышения его пористости. Надо иметь в виду, что замораживание цементного камня в начальный период твердения является наиболее опасным, так как он еще не обладает достаточной прочностью и не может энергично сопротивляться действию льда.

Данный текст является ознакомительным фрагментом.